
Transcription and translation revision

TRANSCRIPTOME RNA copies of the active protein-coding genes

PROTEOME
The cell's repertoire of proteins

Types of RNA

- Coding (mRNA) and non-coding (rRNA and tRNA)
- mRNA (messenger RNA)
 - 4% of total RNA
 - Short half life
- rRNA (ribosomal RNA)
 - Most abundant (80%)
 - Components of the ribosome
- tRNA (transfer RNA)
 - Carry amino acids to the ribosomes
 - Ensure amino acids linked in correct order

DNA 5'— A-G-A-G-G-T-G-C-T
$$=$$
 3'
3'— T-C-T-C-C-A-C-G-A $=$ 5'

mRNA 5'— A-G-A-G-G-U-G-C-U $=$ 3'
tRNAs U-C-U C-C-A C-G-A

Arginine Glycine Alanine

Polypeptide $-$ Arg-Gly-Ala-

mRNA synthesis

- Direction: 5' → 3' (Fig 5-23)
- One DNA strand transcribed at a time
 - A=U (T) ; C ≡G
 - 10bp at a time
 - RNA polymerase

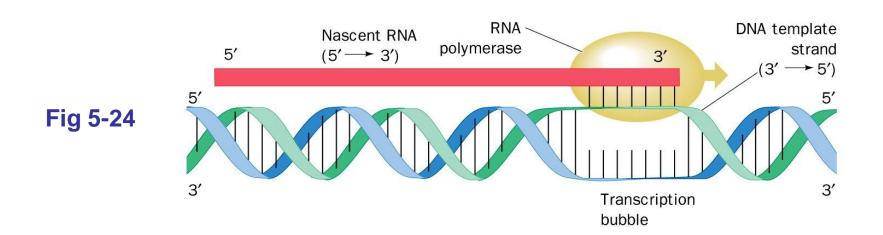
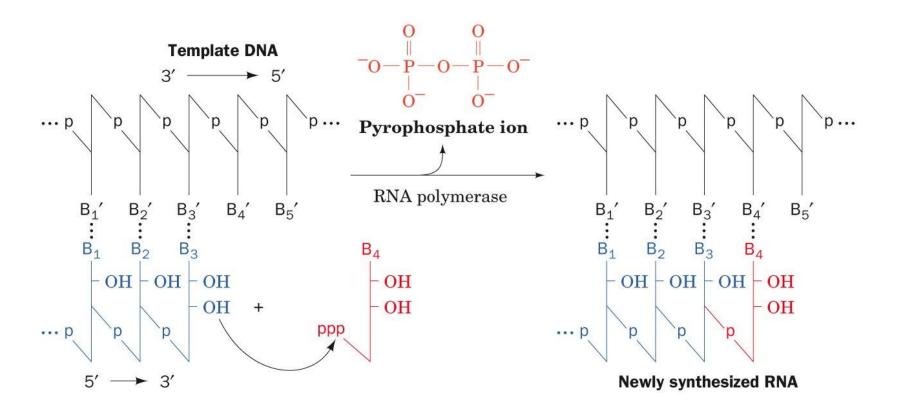
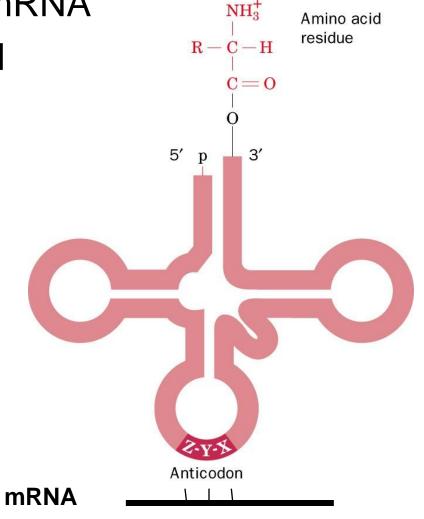



Fig 5-23



Structure if tRNA

tRNA anticodon binds to mRNA

tRNA

Amino acids transferred

Template binding

- RNA synthesis is initiated at specific sites on the DNA template
 - Anti-sense (3'→5") DNA transcribed
- RNA polymerase binds to initiating site via promotor
- Two highly conserved consensus sequences in promotor (Fig 31-10)
 - Pribnow box (hexamer at -10): TATAAT
 - TTGACA hexamer at -35
 - 16-19 bp between the two conserved sequences
- Initiation site (+1) for transcription: A or G

DNA anti-sense

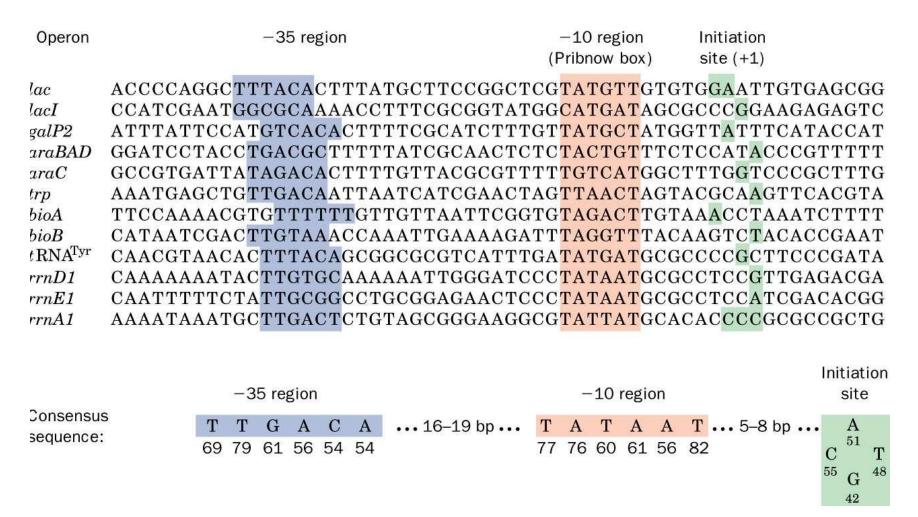
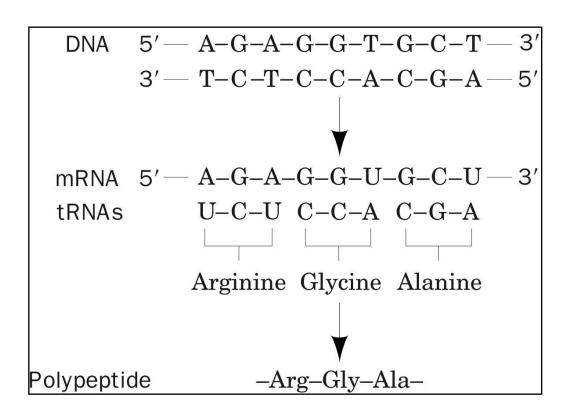
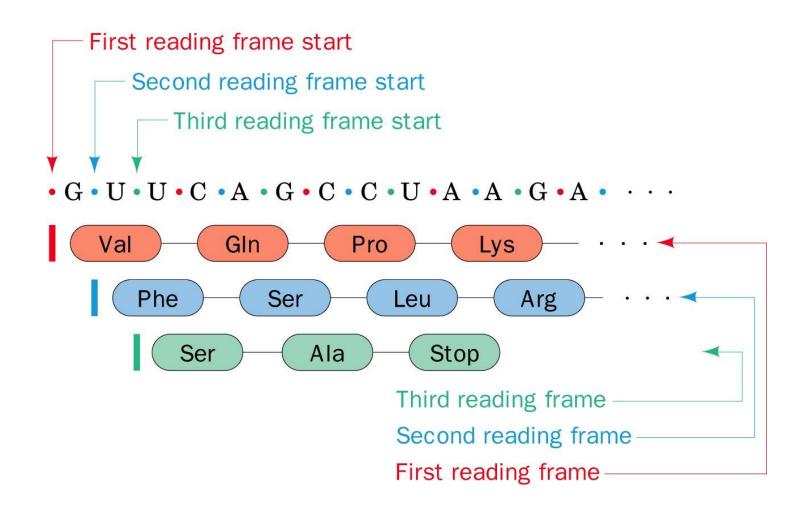



Fig 31-10

The Genetic code

- Specifies how mRNA is translated into a polypeptide
 - Each codon = three nucleotides (on mRNA)
 - Highly degenerate


+	H	.0
H ₃ N-	-¢-	-c<
	R	O

Genetic code

First position (5' end)						
	UUU CH2 UUC	UCU UCC	UAU CH2	UGU Cys CH2 UGC SH	u c	
U	UUA Leu UUG	UCA Ser CH ₂ OH UCG	UAA STOP	UGA STOP UGG Trp CH2	A G	
	CUU CUC CH2	CCU H ₂ N-C-C CH ₂ CH ₂	CAU CH2 His HC—NH CAC C—H HC—NH	CGU CH2 CH2	u c	
C	CUA Leu CH	CCA Pro	CAA CH ₂ CH ₂ CAG CH ₂ C=O CAG	$\begin{array}{c cccc} CGA & CH_2 \\ CGA & NH \\ & \downarrow & \\ C=NH_2 \\ CGG & \downarrow & \\ NH_2 \end{array}$	A G	
	AUU AUC Ile H ₃ C—CH CH ₂	ACU ACC	AAU CH_2 AAC Asn $C=0$ H_2N	AGU AGC Ser CH ₂ OH	u c	
A	AUA AUG Met ^b H ₃ C—S—CH ₂ —CH ₂	ACA HO CH ₃	AAA Lys $ \begin{array}{c} \text{AAG} & \text{Lys} \\ \text{H}_{3}\text{N}^{+}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2} \end{array} $	AGA AGG ^{Arg}	A G	
G	GUC	GCC	GAU CH_2 $C=0$	GGU GGC	u c	
	GUA Val H ₃ C CH ₃	GCA Ala CH ₃ GCG	GAA CH ₂ GAG Glu CH ₂ C=0	GGA Gly H	A G	

⁶Nonpolar amino acid residues are tan, basic residues are blue, acidic residues are red, and polar uncharged residues are purple.
⁶AUG forms part of the initiation signal as well as coding for internal Met residues.

- Ribosomes read mRNA in 5'→3' direction
 - Reading frame must be correct (Fig 5-30)
 - AUG (usually) sets reading frame = Start codon

Translation

- Initiation of translation: 5'-AUG-3' on mRNA
 - Codes for methionine –START
- Termination: 5'UAG3'/ 5'UAA3'/5'UGA3'
- Translational initiation site specified by more than just initiation codon
 - AUG codons that are not initiation sites are masked via mRNA secondary structure
 - Shine-Dalgarno sequence
- Polypeptide grows from N-terminus to Cterminus

Shine Dalgarno sequence

- Purine-rich tract of 3-10 nucleotides on mRNA
 - ~10 nucleotides upstream from START codon (AUG)
 - Binds to 16S rRNA (which has pyrimidine-rich segment at 3' end)
 - Helps ribosome select correct initiation codon

Figure 32	-43		Shine Dalgarno	Initiation codon
mRNA	araB galE lacI lacZ Qβ phage replicase φX174 phage A protein R17 phage coat protein Ribosomal S12 Ribosomal L10 trpE trp leader	- A G C C C C C C A A U C C A A U C C C A A U C C C C	U A A U G G A G C G U C A G G G U G G I C A C A G G A U G A A U A A G G A U G A A U U G G A G G C U I C C G G G G U U U G C C A G G A G C A A A U U A G A G A A	A A A C G A U G G C G A U U - G A A U U A U G A G A G U U - U G A U U G U G A A A C C A - C A G C U A U G U C U A A G - U U U U U A U G G U U C U - G A A G C A U G G C U U C U - A U U U A A U G G C U U C U - A U U U A A U G G C U U U A - U A A C A A U G G C U U U A - U A A C A A U G G C A A C A - C G A C A A U G A A A G C A - C U A G - 5'